

Standard Practice for Determining Contrast Sensitivity in Radiology¹

This standard is issued under the fixed designation E1647; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice covers the design and material selection of a contrast sensitivity measuring gauge used to determine the minimum change in material thickness or density that may be imaged without regard to unsharpness limitations.

1.2 This practice is applicable to transmitted-beam radiographic imaging systems (film, radioscopy, computed radiography, and digital detector array image detectors) utilizing X-ray and gamma ray radiation sources.

1.3 The values stated in inch-pound units are to be regarded as standard. The SI units given in parentheses are for information only.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific safety statements, see NIST/ANSI Handbook 114 Section 8, Code of Federal Regulations 21 CFR 1020.40 and 29 CFR 1910.96.

2. Referenced Documents

- 2.1 ASTM Standards:²
- B139/B139M Specification for Phosphor Bronze Rod, Bar, and Shapes
- B150/B150M Specification for Aluminum Bronze Rod, Bar, and Shapes
- **B161** Specification for Nickel Seamless Pipe and Tube
- B164 Specification for Nickel-Copper Alloy Rod, Bar, and Wire
- B166 Specification for Nickel-Chromium-Iron Alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum Alloy (UNS N06617), and Nickel-Iron-

Chromium-Tungsten Alloy (UNS N06674) Rod, Bar, and Wire

- E747 Practice for Design, Manufacture and Material Grouping Classification of Wire Image Quality Indicators (IQI) Used for Radiology
- E1025 Practice for Design, Manufacture, and Material Grouping Classification of Hole-Type Image Quality Indicators (IQI) Used for Radiology
- E1255 Practice for Radioscopy
- E1316 Terminology for Nondestructive Examinations
- E1411 Practice for Qualification of Radioscopic Systems
- E1734 Practice for Radioscopic Examination of Castings
- E1742 Practice for Radiographic Examination
- E2002 Practice for Determining Total Image Unsharpness and Basic Spatial Resolution in Radiography and Radioscopy
- E2445 Practice for Performance Evaluation and Long-Term Stability of Computed Radiography Systems
- 2.2 Federal Standards:³
- 21 CFR 1020.40 Safety Requirements for Cabinet X-ray Systems
- 29 CFR 1910.96 Ionizing Radiation
- 2.3 NIST/ANSI Standards:
- NIST/ANSI Handbook 114 General Safety Standard for Installations Using Non-Medical X-ray and Sealed Gamma Ray Sources, Energies to 10 MeV⁴
- 2.4 ISO Standard:⁵

ISO 19232–5 Duplex Wire Image Quality Indicator

2.5 Other Standards:

EN 462 – 5 Duplex Wire Image Quality Indicator (withdrawn, replaced by ISO 19232-5)⁶

¹ This practice is under the jurisdiction of ASTM Committee E07 on Nondestructive Testing and is the direct responsibility of Subcommittee E07.01 on Radiology (X and Gamma) Method.

Current edition approved June 1, 2016. Published July 2016. Originally approved in 1994. Last previous edition approved in 2009 as E1647 – 09. DOI: 10.1520/ E1647-16.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

EN 13068–1 Radioscopic Testing-Part 1: Qualitative Measurement of Imaging Properties⁶

³ Available from U.S. Government Printing Office Superintendent of Documents, 732 N. Capitol St., NW, Mail Stop: SDE, Washington, DC 20401, http:// www.access.gpo.gov.

⁴ Available from American Society for Nondestructive Testing (ASNT), P.O. Box 28518, 1711 Arlingate Ln., Columbus, OH 43228-0518, http://www.asnt.org.

⁵ Available from International Organization for Standardization (ISO), ISO Central Secretariat, BIBC II, Chemin de Blandonnet 8, CP 401, 1214 Vernier, Geneva, Switzerland, http://www.iso.org.

3. Terminology

3.1 *Definitions*—Definitions of terms applicable to this test method may be found in Terminology E1316.

4. Summary of Practice

4.1 It is often useful to evaluate the contrast sensitivity of a penetrating radiation imaging system separate and apart from unsharpness measurements. Conventional image quality indicators (IQI's), such as Test Method E747 wire and Practices E1025 or E1742 plaque IQIs, combine the contrast sensitivity and resolution measurements into an overall performance figure of merit, other methods such as included in Practice E2002 do not address contrast specifically. Such figures of merit are often not adequate to detect subtle changes in imaging system performance. For example, in a high contrast image, unsharpness can increase with almost no noticeable effect upon overall image quality. Similarly, in an application in which the imaging system provides a very sharp image, contrast can fade with little noticeable effect upon the overall image quality. These situations often develop and may go unnoticed until the system performance deteriorates below acceptable image quality limits.

5. Significance and Use

5.1 The contrast sensitivity gauge measures contrast sensitivity independent of the imaging system spatial resolution limitations. The thickness recess dimensions of the contrast sensitivity gauge are large with respect to the unsharpness limitations of most imaging systems. Four levels of contrast sensitivity are measured: 4%, 3%, 2%, and 1%.

5.2 The contrast sensitivity gauge is intended for use in conjunction with a high-contrast resolution measuring gauge, such as Practice E2002, ISO 19232 – 5 Duplex Wire Image Quality Indicator⁷, or a line-pair gauge. Such gauges measure system unsharpness essentially independent of the imaging system's contrast sensitivity. Such measurements are appropriate for the qualification and performance monitoring of radiographic and radioscopic imaging systems with film, realtime devices, Computed Radiography (CR) and Digital Detector Arrays (DDA).

5.3 Radioscopic/radiographic system performance may be specified by combining the measured contrast sensitivity expressed as a percentage with the unsharpness expressed in millimetres of unsharpness. For the duplex wire image quality indicator, the unsharpness is equal to twice the wire diameter. For the line pair gauge, the unsharpness is equal to the reciprocal of the line-pair/mm value. As an example, an imaging system that exhibits 2% contrast sensitivity and images the 0.1 mm paired wires of the duplex wire IQI (equivalent to imaging 5 line-pairs/millimeter resolution on a line-pair gauge) performs at a 2%–0.2 mm sensitivity level. A standard method of evaluating overall radioscopic system performance is given in Practice E1411 and in EN 13068–1. A conversion table from duplex wire read out to lp/mm can be

found in Practice E2002. For CR system performance evaluation, this contrast sensitivity gauge is used in Practice E2445.

6. Contrast Sensitivity Gauge Construction and Material Selection

6.1 Contrast sensitivity gauges shall be fabricated in accordance with Fig. 1, using the dimensions given in Table 1, Table 2, and Table 3.

6.2 The gauge shall preferably be fabricated from the examination object material. Otherwise, the following material selection guidelines are to be used:

6.2.1 Materials are designated in eight groupings, in accordance with their penetrating radiation absorption characteristics: groups 03, 02, and 01 for light metals and groups 1 through 5 for heavy metals.

6.2.2 The light metal groups, magnesium (Mg), aluminum (Al), and titanium (Ti), are identified as 03, 02, and 01, respectively, for their predominant constituent. The materials are listed in order of increasing radiation absorption.

6.2.3 The heavy metals group, steel, copper base, nickel base, and other alloys, are identified as 1 through 5. The materials increase in radiation absorption with increasing numerical designation.

6.2.4 Common trade names or alloy designations have been used for clarification of pertinent materials.

6.3 The materials from which the contrast sensitivity gauge is to be made is designated by group number. The gauge is applicable to all materials in that group. Material groupings are as follows:

6.3.1 Materials Group 03:

6.3.1.1 The gauge shall be made of magnesium or a magnesium alloy, provided it is no more radio-opaque than unalloyed magnesium, as determined by the method outlined in 6.4.

6.3.1.2 Use for all alloys where magnesium is the predominant alloying constituent.

6.3.2 Materials Group 02:

6.3.2.1 The gauge shall be made of aluminum or an aluminum alloy, provided it is no more radio-opaque than unalloyed aluminum, as determined by the method outlined in 6.4.

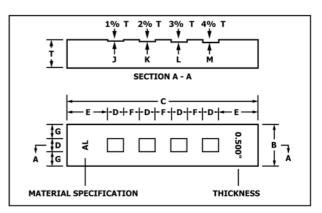


FIG. 1 General Layout of the Contrast Sensitivity Gauge

 $^{^{7}\,\}mathrm{The}$ former version of the duplex wire gauge with the mark EN-462 may also be used.